

Advanced Air Mobility: The new flying

Final document

April 20, 2022

Contents

Executive summary

A.	Background and methodology	5
Β.	Introduction of Advanced Air Mobility	9
C.	Implications for The Netherlands and Western Europe	26
D.	Required actions for the government and the top sectors	40

This document shall be treated as confidential. It has been compiled for the exclusive internal use by our client and is not complete without the underlying detailed analyses and the oral presentation. It must not be passed on and/or must not be made available to third parties without prior written consent from Roland Berger. 3

Executive summary (1/2)

Background and methodology

- Roland Berger was asked to provide insight how eC/VTOL aircrafts can contribute to zero-emission mobility and to determine the focus areas for the Ministry and top sectors
- People from a variety of backgrounds (industry, government, academia) have been involved in the project through three workshops

Introduction of Advanced Air Mobility

- Society faces a number of mobility challenges and opportunities Advanced Air Mobility (AAM) can add a new mobility dimension and complement the
 existing systems
 - It is expected that AAM will allow people and cargo to hop on and off comfortably and quickly fly to many regional destinations
 - For many people in The Netherlands there is an airport at less than 20 minutes Vertiports will ensure total coverage
- Advanced Air Mobility can be defined as regional short-haul flights with manned and unmanned aircraft systems for passenger and cargo applications
 - Multiple electric aircraft configurations exist, each with different characteristics that have significant influence on performance
 - Over 100 AAM aircrafts are currently in development using new electric conventional and VTOL aircrafts Europe accounts for 46%
- Adoption of Advanced Air Mobility is driven by social-cultural factors, technology, infrastructure, economics and regulation
 - Sustainability, social integration, safety and noise/visual pollution are crucial social-cultural factors for AAM adoption: If safe, sustainable, low-noise, green (air) mobility solutions are available this can improve connectivity of regions and replace polluting planes
 - Flight, propulsion and control technology are the three areas that drive AAM adoption from a technology point of view
 - AAM requires three levels of infrastructure: physical, digital and ground transport integration
 - AAM is not likely to be the cheapest and most energy efficient alternative, but is expected to be cost-competitive with traditional air transport
 - Required regulatory approvals relate to the aircraft, MRO, operations and various others
- Non-passenger transport is expected to have greater near-term adoption as result of lower technological and regulatory barriers

Executive summary (2/2)

C Implications for The Netherlands and Western Europe

- A wide variety of passenger and non-passenger applications exist for AAM in The Netherlands and Western Europe
- Two selected use-cases have been detailed: regional air mobility up to 250 km (eVTOL) and Air Traffic Electrification up to 1,000 km (eSTOL and eCTOL)
- RAM consists of scheduled passenger transport and can increase accessibility by offering sustainable transport options
 - It is estimated that 20-40 k passengers per day will use eVTOL transport in 2050 for which 700-1,400 aircrafts are required, predominantly tilt wing
 - The addressable area for eVTOL is between 50-250 km For Utrecht, cities such as The Hague, Deventer, Middelburg and Cologne would be in range
 - 20-40 k passengers per day are expected to use eVTOLs by 2050 The switch rate is expected to be higher for longer distances
 - 700 to 1,400 eVTOLs are expected for RAM in 2050 based on the estimated 20-40 k eVTOL movements in 2050
 - Effects and considerations of eVTOL as a tourism shuttle to the Efteling have been assessed Potential other use cases (e.g. Wadden) to be assessed
- Air traffic can be partly electrified by eSTOL and eCTOL to create sustainable alternatives for conventional air traffic while increasing accessibility
 - It is estimated that 4-14 k passengers per day will use eSTOL and eCTOL transport in 2040 for which 110-310 aircrafts are required
 - The addressable area for eSTOL and eCTOL is up to 1,000 km Cities such as London, Manchester, Prague and Oslo would be in range
 - The demand in 2040 is estimated to be 2.5-12 k passengers per day based on the current number of movements and a switch rate between 0-20%
 - 60-260 required eSTOLs/eCTOLs are expected for Air Traffic Electrification in 2040 based on the estimated 2.5-12 k eSTOL/eCTOL movements in 2040
 - Passenger transport by eCTOL en eSTOL could start to kick in with piloted aircrafts around 2030

Required actions for the government and the top sectors

- Government's key responsibilities are regulation, infrastructure and social-cultural factors while top sectors must focus on technology and economics
- Concrete next steps are identified for the government and top sectors to accelerate development of Advanced Air Mobility in the short-term
 - Program further research on AAM
 - Research public opinion on AAM

D

- Bring together relevant stakeholders to accelerate AAM technology development
- Stimulate research on AAM
- Develop required AAM regulations with EASA
- Map infrastructure requirements for AAM in NL

A. Background and methodology

RB was asked to provide insight how eC/VTOL aircrafts can contribute to zeroemission mobility and to determine the focus areas for the Ministry and top sectors

Background and goal

Background

- With the **rise of 'the new flying'** (electric drones eVTOL¹⁾ aircrafts), new possibilities are added to our mobility system
- It is now **difficult to imagine** what regional or urban air mobility could look like with large-scale application and to what extent this form of mobility will have an **impact on space, mobility and the economy**
- Roland Berger is asked for support in providing insight how eC/VTOL aircrafts can contribute to making zero-emission mobility possible on a large scale
- This project was conducted in a **short-time span** of a few weeks limiting thorough analysis on the vast number of factors influencing advanced air mobility

Goal of the project

Determine the **focus areas** for the Ministry and the top sectors with the mission of a **public-private arrangement** that serves, among other things, the "**Klimaatakkoord**" and all parties that have committed to it

¹⁾ Electric vertical take-off and landing

People with diverse backgrounds have been involved in the project – In total three workshops have been organized

Overview of people involved

Group	Name	Organization	Group	Name	Organization
Project team		MinlenW	Workshop	Kyara Metz	LVNL
		MinlenW	participants	Frans Sengers	Milieu Centraal
		MinlenW			MinlenW
	Jeroen Kroonen	MissieTeam Dplus			MinlenW
	Casper Veenman	Roland Berger			MinlenW
	Niek Cuperus	Roland Berger			MinlenW
Sounding	Roel Hellemons	Airport Eindhoven			MinlenW
board		MinlenW			MinlenW
		MinlenW			MinlenW
	Arjan Vergouw	MissieTeam Dplus		Robbert Jan Kooij	Oost NL
	Martin Nagelsmit	NLR		Robert Dingemanse	PAL-V
Vorkshop	Dean Boljuncic	Airport Eindhoven		Jaap Hatenboer	RAV
articipants	Gijs Vrenken	Airport Eindhoven			RWS
	Sjoerd Berning	Bayards		Geert Boosten	Stichting Duurzaam Vliegen
	Wesley Poland	Bayards		Mark Rademaker	Stichting Duurzaam vliegen
	Maurice Boogerd	Corendon		Tim te Velde	Stichting Duurzaam vliegen
	Chris Popps	Fokker		Yanniek Huisman	Stichting RHIA
	Michiel Wevers	Fokker		Matthijs de Haan	Teuge Airport
	Idius Greving	Fundashon Mariadal		Toon Meelen	Universiteit Utrecht
	Martine Verweij	Greenbridges		Joost Dieben	Venturi

To support legibility, the report contains numerous abbreviations

List of abbreviations

Abbreviation	Meaning
#	Number
%	Percentage
1	Per
~	Approximately
<	Smaller than
>	Larger than
Σ	Total
AAM	Advanced air mobility
ATE	Air traffic electrification
BE	Belgium
C	Circa
CBS	Centraal Bureau voor de Statistiek
C02	Carbon dioxide
DG	Directoraat-generaal
DOA	Design organization approval
e.g.	Exempli gratia (for example)
EASA	European Union Aviation Safety Agency
eCTOL	Electric conventional take-off and landing
eSTOL	Electric short take-off and landing
eVTOL	Electric vertical take-off and landing
excl	Excluding

Abbreviation	Meaning
h	Hour
I&W	Infrastructure and Water management
i.e.	Id est (that is)
incl	Including
k	Thousand
kg	Kilograms
km	Kilometers
max	Maximum
min	Minimum
min	Minutes
MOA	Maintenance organization approval
n/a	Not applicable
NL	The Netherlands
POA	Product organization approval
RAM	Regional air mobility
RB	Roland Berger
Top sec	Top sectors
UAV	Unmanned aerial vehicle
US	United States
W-EU	Western Europe

B. Introduction of Advanced Air Mobility

Advanced Air Mobility can add a new mobility dimension and complement the existing systems

The opportunities for Advanced Air Mobility

Mobility challenges

Congestion increases traffic fatalities and long increasingly commute times

Mobility infrastructure is **costly** and using up more and more space

Opportunities

Technological developments bring new opportunities (e.g. less emission, better noise control, lower cost)

One of the potential answers

Advanced Air Mobility

Advanced Air Mobility adds a new mobility dimension and complements existing systems

It is expected that AAM will allow people and cargo to hop on and off comfortably and quickly fly to many regional destinations

The Customer Journey

BOOK IT

Book spontaneously, even while on your way to the airport, or schedule in advance

HOP ON

Never miss a beat. Get dropped off right next to the plane or walk through a small building or gate

SIT BACK

Relax or be productive – no need to keep your eyes on the road

HOP OFF

Go directly to an automatically arranged waiting rideshare or parked car

For many people in The Netherlands there is an airport at less than 20 minutes – Vertiports would ensure total coverage

Coverage (20-min) of airports in The Netherlands

ALL PEOPLE live within 20-min distance of airport/vertiport

Vertiports added (future potential)

- There already is an airport at less than 20 minute for most people in The Netherlands
- Once vertiports are added, takeoff and landing locations come even closer and accessibility is increased
- This would allow all people in The Netherlands to arrive at take-off and landing locations within 20 minutes

1) Excluding heliports

Advanced Air Mobility can be defined as regional short-haul flights with manned and unmanned aircraft systems for passenger and cargo applications

Advanced Air Mobility

Advanced Air Mobility can be defined as electric conventional¹⁾ and vertical take-off and landing (VTOL) for short flights with a radius of 80-km²⁾ and intraregional flights of hundreds kms³⁾ between urban and rural areas

It does not includeConventional

Conventional helicopters

 Small drones (typically with a payload <100 kg; not capable of transporting passengers)

- UAVs
- Long distance (autonomous) aircraft

1) Including short take-off and landing (STOL); 2) Range of AAM flights could be shorter for specific use-cases (e.g., emergency medical service); 3) Range could be longer (up to c. 1000 km) in case of electric conventional aircrafts

Source: Roland Berger

Multiple electric aircraft configurations exist, each with different characteristics that have significant influence on performance

AAM aircraft architectures – Overview

			eVTOL			eSTOL	/ eCTOL
	696 3 ** 3 > 869	$\bigcirc \bigcirc$					
	Multicopter	Quadrocopter	Lift & cruise (hybrid)	Tilt-propeller	Tilt-wing	eSTOL	eCTOL
Disc loading ¹⁾		_	~	+	+	++	++
Hoovering efficiency ²⁾	++	+	~		_		
Downwash ³⁾ speed & noise level	++	+	~	_	_		
Gust resistance and stability		_	~	+	+	++	++
Forward flight speed & efficiency	~60-130 km/h	~130-190 km/h	~130-190 km/h	~140-300 km/h	~140-300 km/h	~140-350 km/h	~300-500 km/h
Approximate range ⁵⁾	30-80 km	up to 150 km	up to 300 km	up to 300 km	up to 500 km	up to 800 km	up to 900 km
Approximate payload ⁶⁾	~200 kg	up to 500 kg	up to 800 kg	up to 800 kg	up to 800 kg	up to 1,000 kg	up to 2,000 kg
Advantages	Adapted for short trip with frequent hoovering	Design accommodating multiple mission types	 VTOL and STOL⁴⁾ No tilting mechanism 	Combination of VTOL capacity and range	 Reduced mass VTOL and STOL⁴⁾ 	 Potential greener solution, depending on source of electricity 	 Potential greener solution, depending on source of electricity
Disadvantages	Low range and speed	 Energy consumption in cruise Complex design 	MassUnused propellersDrag in cruise	 High cost and complexity of the tilting mechanism Complex maneuvers 	 High cost and complexity of the tilting mechanism Complex maneuvers 	 Requires a runway albeit shorter than conventional aircrafts 	 Requires conventional runway
Time to market	Fastest certification	n/a	Slower certification	Slowest certification	n/a	n/a	n/a

++ Very high + High \sim Neutral - Low - Very low

1) Disc loading defined as AAM weight divided by total rotor disc area; 2) Lower disc loading generates improved hovering efficiency; 3) Ground-oriented airflow during lift or landing phases; 4) Also possible as short takeoff and landing (STOL) 5) Expected range at commercial launch; 6) Varies according to number of seats for each concept

Source: Desk research, Roland Berger

Over 100 AAM aircrafts are currently in development using new electric (potentially autonomous) conventional and VTOL aircrafts – Europe accounts for 46%

Distribution of ~280 publicly known electrically propelled aircraft programs, Aug 2021¹⁾²⁾

1) Only including developments with first flights from 2010 and major electric concepts; excluding UAVs and purely recreational developments; 2) Percentages may not add up due to rounding

Source: Roland Berger Sustainable Aircraft Database

Adoption of Advanced Air Mobility is driven by social-cultural factors, technology, infrastructure, economics and regulation

Overview of the AAM adoption drivers

1) Based on overall estimation (acknowledging differences between aircrafts and use-cases)

Source: Desk research, Expert Interviews, Workshops, Roland Berger

The adoption drivers for AAM each have their underlying sub-drivers

Detailed adoption drivers

Social- cultural factors	1	Sustainability	Infrastructure 3	Physical and operational infrastructure (e.g. vertiports, energy)
		Social integration	0- <u>0</u>	Digital infrastructure
		Safety	0-0	Ground transportation integration
e e		Noise/visual pollution	Economics (4)	Economics
	2		Regulation 5 & certification	Aircraft approvals
logy		Flight technology		Maintenance organization approval
		Propulsion technology		Operational certificates
		Control technology		Other regulations

Sustainability, social integration, safety and noise/visual pollution are crucial social-cultural factors for AAM adoption

AAM adoption drivers: Social-cultural factors

Sustainability

Providing safe, sustainable, low-noise, green (air) mobility solutions could improve connectivity of regions and replace polluting planes (i.e. relating to emissions and energy)

Social integration

Social integration (including public acquaintance as part of other modalities) is necessary to complement long-distance and local transport services

Safety

Safe operations especially in dense urban areas for both passengers and pedestrians are always paramount

Noise/visual pollution

Noise/visual pollution produced by an AAM aircraft especially around vertiports is influenced by an aircraft's design and the way it is operated Current maturity¹⁾

Expected developments

- Social-cultural factors are mainly driven by sustainability, social integration, safety, and noise/visual pollution
- Non-passenger applications (e.g. postal, emergency services) expected to gain public acceptance faster, picking up by 2025, helping to pave the way for passenger application
- **Piloted applications** to gradually gain acceptance with first commercial services emerging starting 2025 **autonomous passenger applications** are **not expected** to gain widespread acceptance **before 2035** mainly due to safety concerns
- Increasing airspace saturation leading to noise/visual pollution will most likely decrease public acceptance

1) Based on overall estimation (acknowledging differences between aircrafts and use-cases)

Source: Desk research, Expert Interviews, Workshops, Roland Berger

Flight, propulsion and control technology are the three areas that drive AAM adoption from a technology point of view

AAM adoption drivers: Technology

Flight technology

- Five key eVTOL flight architectures in development: multicopters, quadrocoptors, lift & cruise (hybrid), tiltpropeller, tilt-wing
- Two other electric flight architectures: eCTOL, eSTOL

Propulsion technology

- Electric systems as key compenents in AAM aircraft
- Full-electric and hybrid configuration mainly driven by market application (e.g. hybrid for highly frequent missions such as emergency medical services)

Control technology

- Piloted vs. autonomous solutions
- Autonomous is expected to come first for non-passenger applications in rural areas
- Autonomous for passenger application will likely come in steps

Expected developments

- Different aircraft platforms are being developed from multicopters with few mechanics involved, lift & cruise solutions with double propulsion to more complex tilting mechanism
- Among new technologies, the electric/hybrid propulsion system is the key component to improve air mobility economics
- While most technology exists for autonomous flight system, the absolute robustness of the system is very difficult to obtain – Nevertheless first pilot should come for nonpassenger application in safe environment over the next decade
- Additional autonomous system, specifically for air traffic management, are expected to come in the 2030s to support crowded airspace coming with mass deployment of air mobility solution

1) Based on overall estimation (acknowledging differences between aircrafts and use-cases)

Source: Desk research, Expert Interviews, Workshops, Roland Berger

AAM requires three levels of infrastructure: physical, digital and ground transport integration

AAM adoption drivers: Infrastructure

1) Based on overall estimation (acknowledging differences between aircrafts and use-cases)

Source: Desk research, Expert Interviews, Workshops, Roland Berger

Current maturity¹⁾

LOW

Physical infrastructure picking up by

2025 with the first commercial non-

applications is expected to develop in line with the market, however it is of

higher complexity in design and operations, and is expected to pick up

 Physical infrastructure in rural areas is going to develop first due to easier conditions (space, charging, regional

airport) and will be paramount even for **urban operations starting around**

applications is already in place today, but must be fine-tuned to better support high-density, low-altitude air

 Digital infrastructure for autonomous applications is expected to start developing and collecting more data points at around 2025 with first non-

passenger applications

Digital infrastructure for piloted

Expected developments

passenger applications

Infrastructure for passenger

significantly around 2030

2025

mobility

AAM is not likely to be the cheapest alternative, but is expected to be cost-competitive with traditional air transport

AAM adoption drivers: Economics

Ŧ

c.+150

~1.7

ŧŧ

eVTOL 2030

c.-50%

~2

eVT0I 2040

Current maturitv¹⁾ LOW

Expected developments

- · Advanced Air Mobility is not likely to be cost-competitive to the cheapest alternative
- Passenger: cost of ground transport is expected to decrease as cost gains from autonomy also apply to taxis
 - Advanced Air Mobility is expected to be cost-competitive versus traditional air transport
- Non-passenger: traditional 'feeder' air cargo is expected to be cheaper as result of higher payload per unit versus Advanced Air Mobility
- · Advanced Air Mobility needs to be affordable for the general public as opposed to being a niche product for the affluent society in order to gain broad traction

1) Based on overall estimation (acknowledging differences between aircrafts and use-cases)

Source: Desk research, Expert Interviews, Workshops, Roland Berger

Backup: eVTOLs will be cheaper to operate than helicopters, but are not likely to be cost competitive vs. ground transport as cost gains from autonomy also apply to taxis

1) All modes compared with an average load factor of c. 75% based on 2021 prices not adjusted for inflation; 2) ICE – Internal Combustion Engine

Source: Desk research, Roland Berger

Backup: eVTOLs are more energy efficient than traditional airplanes but are not likely to be energy competitive vs. ground transport due to high energy usage

Passenger transport cost comparison [Wh per passenger-kilometer]

Required regulatory approvals relate to the aircraft, MRO, operations and various others

AAM adoption drivers: Regulation & certification

oe oo Aircraft		MRO	Operatio	ons		r regulation:	S
Design Organization Approval (DOA)	Production Organization Approval (POA)	Maintenance Organizational Approval (MOA)	Air Operator Certificate (AOC)	Commercial Pilot License (CPL)	Air traffic management	Local regulations	Spectrum allocation
each aircraft design	 POA related procedures are integrated into the EASA Quality Management System, which also complies with the requirements of EASA's Part 21 Under the POA, companies manufacturing products and parts must prove that the production and quality management processes are in accordance with regulatory standards Type Certificate for before to start any loperation 	 MOA is a standard for the approval of organizations that perform maintenance on aircraft and aircraft components that are registered in EASA Member States 	 AOCs are granted by the relevant authority in each jurisdiction, typically the National Aviation Authority Main objective of AOC is to ensure operations are safe and compliant with regulation. Regulator examines extensively the operator's workforce skills, procedures and operating manuals 	 Aviation authority requires certified pilot to operate manned aircraft Pilot must follow a standard training and demonstrate required capabilities in order to obtain a valid CPL 	• Air traffic controller must comply to the EASA regulation	• Cities and local governments control, at least in part, the develop- ment of the ground infrastructure and operations parameters (e.g. noise level, no fly zone, emission) therefore the development of new routes	 International and national bodies are responsible for spectrum allocation, notably to support autonomous system

Current maturity¹⁾

Expected developments

- Regulation and certification work in charge of Aviation mobility authorities and Aerospace manufacturing (e.g. EASA in Europe)
- China, US and Europe are **defining the market** and consequently
 regulation and certification
- Regulatory environment is primarily defined at **national level**
- Risk management is at the heart of all regulators favoring non-passenger piloted applications in rural environment, especially as proof of concept
- Autonomous operation will be proof tested on cargo application first, autonomous pilot for passenger applications will follow
- eVTOLs face certification risks due to the novelty this market represents in the Air Mobility in terms of both design, technology and use cases

1) Based on overall estimation (acknowledging differences between aircrafts and use-cases)

After 2030-40 more widespread adoption of AAM mobility will take place – Nonpassenger transport is expected to have earlier adoption as result of lower barriers

AAM adoption curves

- Selected pilots for cargo and passenger transport in selected cities already in place
- First commercial applications may emerge around 2025 with focus on cargo in rural areas and first adopter cities (starting with small drone – payload < 150 kg
- Passenger transport may start to kick in with piloted aircrafts around 2030 – After 2035 and 2040 widespread adoption of air mobility will take place

Source: Desk research, Expert Interviews, Roland Berger

C. Implications for The Netherlands and Western Europe

A wide variety of passenger and non-passenger applications exist for AAM in The Netherlands and Western Europe

Potential AAM use-cases (non-exhaustive)

F	PASSENGER USE CASE	—— NON-PASSENG	ER USE CASES ——	
Scheduled	On-demand	Other	Cargo transportation	Other
 Regional air mobility Air traffic electrification Airport shuttle Airline feeder flights 	 Emergency medical services (air ambulance) Tourism shuttle Intra-city air taxi Commuter air taxi 	 Regional airline routes¹⁾ Offshore services (e.g. windmill parks) 	 Transportation of air cargo Intralogistics Emergency medical services (medical supply, live organs, lab samples) Remote supply (e.g. scarcely populated areas) Offshore services (cargo) 	 Site/area surveying University research Law enforcement Construction support Firefighting Military applications

1) Once sufficient ranges can be achieved

Two selected use-cases have been detailed: regional air mobility up to 250 km (eVTOL) and Air Traffic Electrification up to 1,000 km (eSTOL and eCTOL)

Selected use-cases

Including use case specification: tourism shuttle for the Efteling

Air traffic electrification (250-1,000 km range): eSTOL and eCTOL

The demond in 0040 is actimated to be 0.5.40 k near summary day bened address able size for a OTOL and a OTOL is sin to 4 000 how O'the size Air traffic can be partly electrified by eSTOL and eCTOL to create sustainable alternatives for conventional air traffic while increasing accessibility

Geography	Western Europe	VALUE PROPOSI
Definition FLIGHT SPECIFICS Trip time (max)	International passenger transport from the Netherlands to North-Western Europe Scheduled flights Up to 180 minutes	 Sustainability: Accessibility: (closer to desti Price: technolo transport Comfort: small Frequency: small
inp ume (max)	op to 160 minutes	- rrequency, sin
Range (typical)	250-1,000 km	MATURITY OF ADOP
Payload (max)	2,000 kg	Regulation & certifi
		Technology
Speed (max)	Up to 500 km/h	Infrastructure
Type of aircraft	· eSTOL (short distance, less passengers, landing near centers)	Economics ¹⁾
	 eCTOL: longer distances, more passengers) 	Social-cultural facto
		Currently (2021)

Key REQUIREMENTS

- electricity enables renewable energy smaller aircrafts and shorter runways allow more destinations
- ogy might be cost competitive with conventional air er passenger groups reduce check-in time and noise
- naller aircrafts allow for more flights per hour

Expected (2040)

PTION FACTORS r | 38

Roland Berger | 35

RAM consists of scheduled passenger transport and can increase accessibility by offering sustainable transport options

Use-case snapshot: Regional Air Mobility (eVTOL)

REGIONAL AIR MOBILITY

Geography	The Netherlands and Western Europe
Definition	Regional passenger transport
	 City to city trips
	 Urban to rural trips
	Scheduled flights
FLIGHT SPECIFICS	
Trip time (max)	Up to 120 minutes
Range (typical)	50-250 km
Payload (max)	350 kg
Speed (max)	Up to 300 km/h
Type of aircraft	eVTOL: tilt-wing
(most likely)	eVTOL: tilt-propeller

Key REQUIREMENTS

VALUE PROPOSITION

- Accessibility: eVTOLs allow more destinations and increase speed, especially in non-densely populated and less-connected areas
- **Sustainability**: electricity enables renewable energy
- Comfort: smaller passenger groups reduce check-in time and noise
- Frequency: smaller aircrafts allow for more flights per hour

MATURITY OF ADOPTION FACTORS

1) Economics vs. alternative

Source: Expert interviews, Desk research, Roland Berger

It is estimated that 20-40 k passengers per day will use eVTOL transport in 2050 for which 700-1,400 aircrafts are required, predominantly tilt wing

Market sizing results RAM

1) Assumptions include that the adoption drivers (social-cultural, technology, infrastructure, economics and regulation) are fully met, and a 3% switch rate if time is 100% reduced

Source: CBS ODiN 2019, Expert interviews, Uber Air, Distance.to, Desk research, Roland Berger

Estimation – Assumptions apply¹⁾

The addressable area for eVTOL is between 50-250 km – For Utrecht, cities such as The Hague, Deventer, Middelburg and Cologne would be in range

Movements in, from and to the Netherlands [m/day]

Addressable area and associated movements: Regional Air Mobility

Addressable area of a station in Utrecht

1) Tours (departure address same as arrival address, e.g., hiking) and movements with intermediate stops (e.g., package delivery) excluded

Source: CBS ODiN 2019, Distance.to, Roland Berger

20-40 k passengers per day are expected to use eVTOLs by 2050 – The switch rate is expected to be higher for longer distances as result of higher time savings

Market sizi	ng movements (dem	nand): R	egional Air Mobility		Assurdrive	ming adoption rs are fully met	Estimation – Assumptions apply
Range	Movements [m/day]		Example travel	Aircraft type (most likely)	Typical time saving	Estimated switch rate	Est. demand 2050 ²⁾ [k movements/day]
<50 km	46	93%	Utrecht - Rotterdam: 48 km	n.a.	~20%	0%	0 ∑ 20-40 k
50-75 km	1.6	3.2%	Utrecht – The Hague: 60 km	eVTOL ³⁾	~25%	0.5-1%	8-15
75-100 km	0.7	1.5%	Utrecht – Deventer: 85 km	eVTOL ³⁾	~25%	0.5-1%	4-8
100-150 km	0.6	1.2%	Utrecht – Middelburg: 125 km	eVTOL ³⁾	~50%	1-2%	6-12
150-250 km	0.3	0.7%	Utrecht – Cologne: 180 km	eVTOL ³⁾	~50%	1-2%	3-6
>250 km	0.1 Substitution of land traffic only	0.2%	Utrecht – Frankfurt: 330 km	eSTOL	~70%	1.5-2.5%	1-2 Included in the Air Traffic Electrification use case (p.37
Excluded	0.1	0.3%		N.a.	N.a.	N.a.	N.a.
Source	Movements in ODiN 2019 (CBS) to entire Netherlands	, extrapolated		Expected most (time) efficient aircraft	Assumptions apply ¹⁾	Assuming 3% switch rate if tim is 100% reduced	

1) Assuming pre/post travel 15 min each, lift-off/landing 2 min each, speed 280 (tilt wing) km/h or 450 km/h (eCTOL), compared to car; 2) 2040 for eSTOL; 3) Tilt-wing assumed for eVTOL calculations

Source: CBS ODiN 2019, Expert interviews, Uber Air, Distance.to, Desk research, Roland Berger

700 to 1,400 eVTOLs are expected for RAM in 2050 based on the estimated 20-40 k eVTOL movements in 2050

Market sizing required aircrafts (supply): Regional Air Mobility

Est. demand 2050¹⁾ Est. peak demand 2050 Aircraft type Capacity **Required** aircrafts Occupancy at Turn around [k movements/dav] [k movements/h] (most likely) [passenger] in 2050¹⁾ [k] time [min] Range peak <50 km ∑ 20-40 k ∑ 0.7-1.4 k 0 0 0 n.a. n.a. n.a. n.a. eVTOL²⁾ 8-15 0.6-1.2 50-75 km 5 67% 30 0.2-0.5 75-100 km 4-8 0.3-0.6 eVTOL²⁾ 67% 5 30 0.1-0.3 6-12 100-150 km 0.5-1 0.2-0.5 eVTOL²⁾ 67% 5 30 3-6 0.2-0.5 150-250 km 0.1-0.3 5 67% eVTOL²⁾ 30 Included in the Air Traffic 0.1-0.2 1-2 < 0.1 >250 km eSTOL 8 80% 45 Electrification use case (p.38) Excluded N.a. N.a. N.a. N.a. N.a. ~50% of passengers travel within AAMs typically 4-6, Source Expected most Some inefficiency Time for charging the 4 peak hours (based on eSTOL/ eCTOL ~8 (expert interview (time) efficient in occupancy movements in ODiN 2019 of CBS) aircraft based)

Estimation – Assumptions apply

1) 2040 for eSTOL; 2) Tilt-wing assumed for eVTOL calculations

Source: CBS ODiN 2019, Expert interviews, Uber Air, Desk research, Roland Berger

As an example, effects and considerations of eVTOL as a tourism shuttle to the Efteling have been assessed – Other use cases (e.g. Wadden) to be assessed

Expected **VOLUMES** on peak days

RAM use case specification: tourism shuttle for the Efteling

fteling

RAM specification: Efteling

- Efteling has strong growth ambitions: 7 m visitors/y
 Pre-COVID (2019) 5 m visitors/y
 Peak periods with 37 k/day visitors put pressure on nearby villages and highways
 eVTOL might be a solution to future connection
- to future congestion problems

City	Visitor movements/ day total	Commuter switch rate	Visitor movements/ day eVTOL	Required eVTOLs
Amsterdam	3,000	~1%	30	3
The Hague	2,500	~1%	25	2.4
Groningen	500	~1.5%	8	1.1
Almere	750	~1%	8	0.8
Brussels	1,600	~1.5%	23	2.4
Antwerp	650	~1%	6	0.6
Gent	250	~1.3%	3	0.3
Total			86 + 17	9 + 1.4

Assumptions

- 50 k visitors on peak days assumed (in line with growth ambition)
- Movements/day by city based on known NL/BE visitor split and city sizes (with a correction for distance)
- Only largest cities in NL/BE for which eVTOL safes significant time given, grey rows excluded in final calculation due to low eVTOLs
- Commuter switch rate, eVTOL movements and required eVTOLs calculated like RAM eVTOL sizing

Rough estimation – Assumptions apply

Key EFFECTS and CONSIDERATIONS

86 movements/day by eVTOL will lead to a reduction of 17 cars / 34 car movements (assuming c.2.5 passengers per car)

C02

Since alternative modes of transport (public transport, car) also probably depend on renewable energy sources by 2050

 Estimates of AAM energy consumption vary¹), but the range 0.5-1.5 kWh/km seems plausible for a ~100 km distance, a flight between Efteling and Amsterdam (~80 km) then requires 40-120 kWh, whereas the trip by electric car requires 17 kWh²)

 Flexible allocation: eVTOLs can be used for intercity/work transport on weekdays, and for tourism in the weekend

In the calculation a commuter switch rate of ~1-1.5% was used, **switch rate could become larger** if Efteling would focus on eVTOL promotion and offer combined transport and entrance tickets

1) Depending on source, aircraft type and distance, significant energy consumption during lift-off and landing results in more efficiency on longer distances; 2) Assuming 106 km (distance Google Maps) and 16 kWh per 100 km (Tesla Model 3)

Source: Efteling, Stec Groep, Looopings, Expert interviews, Uber Air, Distance.to, Shashank Sripad et al., Alessandro Bacchini et al., Tesla, Desk research, Roland Berger

Air traffic can be partly electrified by eSTOL and eCTOL to create sustainable alternatives for conventional air traffic while increasing accessibility

Use-case snapshot: Air Traffic Electrification

AIR TRAFFIC ELECTRIFICATION

Geography	Western Europe
Definition	 International passenger transport from the Netherlands to North-Western Europe Scheduled flights
FLIGHT SPECIFICS	
Trip time (max)	Up to 180 minutes
Range (typical)	250-1,000 km
Payload (max)	2,000 kg
Speed (max)	Up to 500 km/h
Type of aircraft	 eSTOL (short distance, less passengers, landing near centers) eCTOL: longer distances, more passengers)

Key **REQUIREMENTS**

VALUE PROPOSITION

- Sustainability: electricity enables renewable energy
- Accessibility: smaller aircrafts and shorter runways allow more destinations (closer to destination)
- Price: technology might be cost competitive with conventional air transport
- **Comfort**: smaller passenger groups reduce check-in time and noise
- Frequency: smaller aircrafts allow for more flights per hour

MATURITY OF ADOPTION FACTORS Low High Regulation & certification Technology Infrastructure Economics¹⁾ Social-cultural factors Currently (2021) Expected (2040)

It is estimated that 4-14 k passengers per day will use eSTOL and eCTOL transport in 2040 for which 110-310 aircrafts are required

1) Ranges <250 km ignored since air traffic movements in this range are limited Source: CBS, Expert interviews, CROW, Groene11, Desk research, Roland Berger

The addressable area for eSTOL and eCTOL is up to 1,000 km – Cities such as London, Manchester, Prague and Oslo would be in range

Addressable area and associated movements: Air Traffic Electrification

Estimation – Assumptions apply

Movements air traffic from and to the Netherlands [k/day]

7-13% 40-70% 10-20% 7-13% 7-13% Oslo NL²⁾ - NL^{2} -NL²⁾ - NL^{2} – NL^{2} – Prague: London: Manchester: Oslo: Rome: 330 km 480 km 720 km 920 km 1,300 km The Netherlands has multiple airports from which electrified air traffic could take place: Schiphol 80-130 and multiple regional airports 20-40 Manchester 250 400 600 800 >1.000 km km km km km 15-25 15-25 London 15-25 Prague Rome 250-400 km¹⁾ 400-600 km 600-800 km 800-1,000 km >1,000 km Addressable eSTOL/eCTOL Not addressable Addressable eSTOL/eCTOL Not addressable

Addressable area of a station in Utrecht

1) Ranges <250 km ignored since air traffic movements in this range are limited; 2) Calculation based on Schiphol

Source: CBS, Expert interviews, Desk research, Roland Berger

The demand in 2040 is estimated to be 2.5-12 k passengers per day based on the current number of movements and a switch rate between 0% and 20%

Market sizing movements (demand): Air Traffic Electrification			Uncertainty: adoption strongly influenced by regulation Estimation – Assumptions a			mptions apply	
Range	Movements air traffic [k/day]		Example travel	Assumed aircraft	Estimated switch rate	Est. demand 2040 [k movements/day]	
250-400 km ²⁾	20-40	10-20%	NL ³⁾ - London: 330 km, 65 min	eSTOL	5-20%		1.5-6
400-600 km	15-25	7-13%	NL ³⁾ - Manchester: 480 km, 80 min	eSTOL	5-15%	1-3	
600-800 km	15-25	7-13%	NL ³⁾ - Prague: 720 km, 85 min	eCTOL	1-10%	0.2-2	
800-1,000 km	15-25	7-13%	NL ³⁾ - Oslo: 920 km, 110 min	eCTOL	0-5%	0-1	∑ 2.5-12 k
>1,000 km	// 80- 130	40-70%	NL ³⁾ - Rome: 1,300 km, 130 min	Conventional aircraft	0%	0	
Source	Based on 72 m air traffic passengers in Netherlands in 2019 (CBS) and ~10% s range assumed ¹⁾		Time based on current time required for a direct flight according (website KLM)	Assumption: <600 km: eSTOL (more landing flexibility), >600 km: eCTOL (less energy consumption)	Assumed (excluding potential regulation effects)		

1) ~15% for 250-400 km assumed because of large volumes between Amsterdam and London; 2) Ranges <250 km ignored since air traffic movements in this range are limited; 3) Calculation based on Schiphol

Source: CBS, KLM, Expert interviews, Desk research, Roland Berger

60-260 required eSTOLs and eCTOLs are expected for Air Traffic Electrification in 2040 based on the estimated 2.5-12 k eSTOL and eCTOL movements in 2040

Market sizing required aircrafts (supply): Air Traffic Electrification				Uncertainty: adoption strongly influenced by regulation		Estimation – Assumptions apply	
Range	Est. demand 2040 [k movements/day]	Assumed aircraft	Capacity [passenger]	Occupancy at peak	Turn around time [min]	Required aircrafts in 2040	
250-400 km ¹⁾	1.5	-6 eSTOL	8	80%	45	30-130	
400-600 km	1-3	eSTOL	8	80%	45	30-80	
600-800 km	0.2-2	eCTOL	16	80%	45	3-30	
800-1,000 km]0-1 ∑2.5-1	2 k eCTOL	16	80%	45	[′] 0-20 ∑ 60-260	
>1,000 km	0	Conventional aircraft	n.a.	n.a.	n.a.	0	
Source		Assuming <600 km eSTOL (landing flexibility) and >600 km: eCTOL (range, energy consumption	8 for eSTOL assumed, 16 for eCTOL (expert interview and Desk research))	Average occupancy of air flights in 2019 (CBS)	~30-60 minutes for charging (expert interviews)		

1) Ranges <250 km ignored since air traffic movements in this range are limited

Source: CBS, Expert interviews, Desk research, Roland Berger

D. Required actions for the government and the top sectors

The government's key responsibilities are regulation, infrastructure and socialcultural factors while the top sectors must focus on technology and economics

AAM adoption drivers and different roles

Leading role Smaller role (incl. no role)

1) Most likely via the Ministry of Infrastructure and Water Management

Source: Desk research, Expert Interviews, Workshops, Roland Berger

There is a longlist of actions required to successfully develop Advanced Air Mobility in The Netherlands and Western Europe

Identified actions

Social- cultural factors	 Facilitate public debate on AAM (e.g. by bringing the right parties together and communicate/inform about the topic) Engage with local communities and end-users to grasp everyone's interests and opinions Enlarge capacity at the Ministry and provinces to increase knowledge Ensure a human capital agenda to develop talent required for AAM (e.g. engineers) 	Gov.Top sec.Gov.Top sec.Gov.Top sec.Gov.Top sec.	Economics 4	Support innovations and scale to make AAM more cost	Gov. Top sec. Gov. Top sec.
Techno- logy	 Work with high tech (e.g. HTSM¹), energy, aviation and automotive industries to promote innovations in new aircraft technologies, lightweight materials and rapid aircraft charging Monitor technological developments (e.g. hydrogen and e-fuels) to ensure usage of latest innovations Ensure knowledge development by building documentation 	Gov.Top sec.Gov.Top sec.Gov.Top sec.	Regulation 5 & certification	 AAM aircraft certification and to develop AAM airspace policies and regulation Ensure capacity at the regulatory bodies (e.g. EASA) to smoothen and accelerate the regulatory approvals Specify required certifications and regulations for AAM to be in The Netherlands and Western-Europe (e.g. eco-slots for 	Gov. Top sec. Gov. Top sec. Gov. Top sec.
Structure	 Determine required infrastructure (e.g. vertiports, energy infrastructure) through the Netherlands that supports the realization of required infrastructure (incl. retaining current infrastructure) Examine how to integrate different air traffic types (i.e. slower vs fast air traffic: AAM vs. conventional aircrafts) Realize hubs (e.g. vertiport Twente) Connect stakeholders to interlink road traffic and AAM Leverage strong position of The Netherlands in specific areas (e.g. charging infrastructure) 	Gov.Top sec.Gov.Top sec.Gov.Top sec.Gov.Top sec.Gov.Top sec.	Over- arching	 AAM affects decision making (incl. effects of potential closure of airports on success of AAM) Support the development of the AAM ecosystem Strengthen the position of the Netherlands, but cooperate internationally to leverage knowledge Identify the added-value of each top sector to AAM 	Gov. Top sec. Gov. Top sec. Gov. Top sec. Gov. Top sec. Gov. Top sec.
Leading role	Smaller role (incl. no role)			. .	

1) High Tech Systems & Materials

Source: Desk research, Expert Interviews, Workshops, Roland Berger

Concrete next steps are identified for the government and top sectors to accelerate development of Advanced Air Mobility in the short-term

Concrete next steps for the government and top sectors

, A ∰_ %	Program further research on AAM	 Determine the government's directing function and long-term goals Define how and when AAM affects decision making Explore other use cases for AAM (e.g. Waddengebied) 	Gov. Top sec. Gov. Top sec. Gov. Top sec.
÷	Research public opinion on AAM	 Facilitate public debate on AAM, by communicating and informing about the topic Engage with local communities and end-users to grasp everyone's interests and opinions Align ambitions with values, views, expectations of consumers, citizens and other stakeholders 	Gov.Top sec.Gov.Top sec.Gov.Top sec.
	Bring together relevant stakeholders to accelerate AAM technology development	 Identify the added-value of each top sector to AAM Triple Helix – academia and knowledge institutes, industry and government Support development of the AAM ecosystem 	Gov. Top sec. Gov. Top sec. Gov. Top sec.
	Stimulate research on AAM	 Support innovation to accelerate AAM development by subsidies Map existing subsidies that can be used for AAM Stimulate (technology) investments into the field of AAM 	Gov. Top sec. Gov. Top sec. Gov. Top sec.
	Develop required AAM regulations with EASA	 Dutch government can take the lead in Europe regarding AAM regulation & certification Ensure uniform regulations within Europe 	Gov. Top sec. Gov. Top sec.
O-O O-O X Leading	Map infrastructure requirements for AAM in NL role X Smaller role (incl. no role)	 Determine required infrastructure through the Netherlands Build a roll-out plan that supports the realization of required infrastructure 	Gov. Top sec. Gov. Top sec.

